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Abstract-Applying the basic idea of time series analysis to the fluid Lagrangian temporal correlation and 
Eulerian spatial correlation functions, a model for particles suspended in turbulent flows has been formu- 
lated. This model contains both the time and space effects of turbulence on particles. As a validation of 
the present model, the experiments of Synder and Lumley and of Wells and Stock are simulated numerically. 
A comparison of the calculated and experimental results, including the particle-transverse dispersions and 
fluctuating velocity decays, is made. Besides, particle-dispersions and fluctuating velocity decays in the 
longitudinal direction are also computed in order to examine the effects of the particle inertia and the 

crossing trajectories. 

1. INTRODUCTION 

THE DISPERSION of particles by turbulent flows can 
be found in many engineering applications, such as 
pulverized-coal combustors, diesel-engine sprays, 
aerosols, and rocket plumes. Our particular concern 
is with ventilation flows. The objective of our research 
is to provide methods of predicting correctly the dis- 
tribution of materials harmful to people working 
inside premises so that we could assess the air quality 
inside these premises. 

During the past few years, many numerical methods 
have been developed to describe turbulent flows laden 
with particles. The models are based either on a 
Eulerian formalism (for example, Abbas et al. [l], 
Durst et al. [2], Elghobashi et al. [3]) or on a Lagran- 
gian formulation. In the Lagrangian methods, the 
trajectories of particles transported by the turbulent 
fluid flow are computed by solving the corresponding 
equation of motion. The main difficulty lies in the fact 
that usually only the mean fluid velocity is known and 
that the fluctuating part of the velocity has to be 
modeled from turbulent characteristics of the flow. 
The fluctuating fluid velocity is obtained from a ran- 
dom process. Obviously, the velocities are correlated 
in space and time and the different existing models 
differ by the forms adopted for the Lagrangian auto- 
correlation function and the Eulerian spatial correla- 
tion function. They also differ by the method of gen- 
erating the random processes. One of the simplest 
Lagrangian models has been proposed by Gosman 
and Ioannides [4] who assume very simple correlation 
functions. An improvement of this model has been 
presented by Ormancey and Martinon [5]. In their 
model the Lagrangian autocorrelation decreases as an 
exponential function. They also allow for two 
Eulerian spatial correlations; one is longitudinal and 

the other is transverse. Berlemont ef al. [6] pursued 
this work and could adopt a more general form for 
the fluid Lagrangian correlation function. Burnage 
and Moon [i’] presented another improvement of the 
work of Gosman and Ioannides based on two Poisson 
processes ; one is for space correlations and the other 
is for time correlations. 

In this paper, we propose a new Lagrangian model 
based on the idea of time series analysis. Two succes- 
sive fluid velocities which differ by one time step are 
related to each other by a Markov process, as done 
by Parthasarathy and Faeth [8]. The new idea inherent 
in this paper is to relate also the two velocities com- 
puted at two different points in space (close to each 
other) by a Markov process. Combining both Markov 
processes, we are then able to compute the fluctuating 
fluid velocities at the successive points of the particle 
trajectory. This method is quite simple and does not 
necessitate following a fluid particle during several 
time steps, as done by previous authors. We change 
the fluid particle every time step. This paper only 
describes an apphcation of our Lagrangian model 
to the simulation of the experiments of Snyder and 
Lumley [9] and of Wells and Stock [IO] for the par- 
title-dispersions and velocity decays. Moreover, some 
additional quantities are also computed so as to pro- 
vide insight into the crossing-trajectory effect [I 11. 

2. ESTABLISHMENT OF THE METHOD 

2.1. Particle motion 
When neglecting the influence of streamline cur- 

vature and the interaction between particles, the 
motion of a spherical and rigid particle in a fluid flow 
is governed by the following equations [ 121: 
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NOMENCLATURE 

(1, coefficients in equation (IO) Y absolute space coordinate 

A, coefficient in equation (I) z normalized fluid fluctuating velocity. 

4 coefficients in equation (IO) 
C,,,, C,,. CH coctlicients for added mass, drag Greek symbols 

and history terms in equation (I ) mean-zero random variable 

4 particle diameter ; mean-zero random variable 
D coefficient in equation (I 6) ; mean-zero, Gaussian random variable 

ev exponential function I: turbulent kinetic energy dissipation 

./A Lagrdngian autocorrelation function rate 

!? acceleration due to gravity i relative space coordinate 

9u Eulcrian spatial correlation function ‘1 rclativc space coordinate 
k turbulent fluctuating kinetic energy 0 angle formed by the [ and X axes 
M grid spacing A lengthscale 
(Re), particle Reynolds number I’ kinematic viscosity coefficient of fluid 
AS distance between particle and fluid in one p density 

time step of calculation 0; standard deviation of 1’ 
I lime T timescale. 
At lime step of calculation 
II fluid fluctuating velocity Subscripts 
11; fluid fluctuating velocity variance I 11 direction 
U fluid instantaneous velocity vector 2 < direction 
V particle inslantaneous velocity vector f  fluid point 

Vd particle terminal (drift) velocity P particle 
x absolute space coordinate S starting point of each time step 
x position vector in the absolute coordinate X X direction 

system 0-XY Y Y direction. 

dV 3 
Ppx = -prG,(v-wJ-vI 

P 

dX 
-=V 
dr (2) 

where d/d1 and D/Dt are the temporal derivatives 
along the particle and fluid trajectories, respectively. 
C,,, C, and C, are coefficients introduced by Riley 
which depend on the particle volume and particle 
Reynolds number (Re),. They are given by [ 13, 141 

crJ = (Re), ?(I +0.15(Re),0.hH7) for (Re), < 200 

and for (Re), < 60 

0.0666 
c, = l.O5- 7 

A;+O.l2 

3.12 
CH = 2.88+ (A,+o.l2)3 

where 

A = KJ-VI’ 

c 

d W-U) 

P 
I I dt 

and (Re), is defined by 

In the present study, the Basset term, the temporal 
derivatives d/dt and D/Dr of the fluid fluctuating vel- 
ocity, are neglected. Such a simplification was justified 
for low turbulence intensities and moderate departure 
from homogeneity [I 51. The corresponding deriva- 
tives of the fluid mean velocity are preserved. The 
mean fluid velocity of the turbulent flows to be dis- 
cussed is uniform ; in such cases, equation (I) reduces 
to 

In the two experiments considered, the particle 
mass-loading is so low that the presence of particles 
does not modify the fluid motion. Therefore all the 
mean data of the fluid turbulent field, including the 
mean velocity, the turbulent kinetic energy and the 
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turbulent kinetic energy dissipation rate, are regarded 
as known (I priori. To know the statistic properties of 
parliclcs. we have lo follow each particle along its 
trajectory. In order to bc able to integrate equations 
(I) and (2). it is ncccssary to know the instantaneous 
velocity of the fluid at the location points of the 
particle. Since the fluid mean velocity is assumed to 
be known, the fluctuating velocity of the fluid has to 
be estimated at the location points of the particle. 

The present discussion is limited to two-dimen- 
sional situations. We begin to model the fluid fluc- 
tuating velocity at the location points of the particle. 
At time I. the particle and a corresponding fluid point 
start out from the same position X,. After AI, they 
arrive at X, and X,, respectively, and the distance 
between X, and X,. is As, as shown in Fig. I. Here X,, 
X, and X, are the position vectors in the absolute 
coordinate system 0-XY. The relative coordinate sys- 
tem o-jr1 is chosen such that its original point, o, is 
sited at the position Xr and the TV axis passes through 
the position X,. Since, in practical applications, the 
flow fields are often inhomogeneous and non-station- 
ary, to lessen the effects of the reference time and 
position, we normalize the fluid fluctuating velocity LI, 
by the square root of its local variance and denote the 
normalized fluctuating component in the i direction 
by Zi, i.e. 

Z, = u,/J(K’) (i = I,?) 

where the subscripts I and 2 denote respectively the 
‘1 and [ directions in the relative coordinate system 
o-jr! shown in Fig. I and the overbar indicates the 
ensemble average values. 

In this paper, we shall assume turbulence to be 
isotropic, which means that the Reynolds stress com- 
ponents II+, are zero for i # j. We assume that the 
normalized fluctuating velocities at positions X,, X, 
and X, have the following correlation relations : 

z,(x,)z,(x,) = Z,(X,)ZJX,),fi,(A/) (i = I, 2) (3) 

0 

FIG. I. The locations of the particle and the fluid poinl at 
the instants I and I + A/. 

-T(X,)Zi(Xr) = ZCGKCG)Y,~(AS) (i = I. 2) (4) 

(throughout this paper, no summation convention is 
used). Relations (3) and (4) are called, respectively. 
the Lagrangian autocorrclation and Eulerian spatial 
correlation functions. 

In the time series analysis [l6], a linear combination 
of the previous values of some random variable and 
white noise is constructed in order to foresee the next 
value of this random variable. The simplest way to 
apply this idea to the stochastic process associated 
with the fluid fluctuating velocity is expressed in equa- 
tion (5) below. Actually, equation (5) had already 
been used by Durbin [ 171 to deal with fluid dispersion 

Z,(X() = u,Z,(X,) +a, (i = I. 2) (5) 

whcrc N, (i = I, 2) are coefficients to bc determined. 
Here z, (i = I, 2), unlike the conventional method, 
arc only mean-zero, random variables independent of 
Z,(X,) but not necessarily Gaussian. The properties 
of 2, will be discussed later. Multiplying both sides 
of equation (5) by Z,(X,) and then taking ensemble 
average (a, and Z,(X,) are independent), we obtain 

Z,(X,)Z,(X,) = a,z,(x,)z,o. (6) 

From equations (3) and (6). we are able to determine 
the coefficient 0, 

u, = .1;,W. (7) 

The new idea of this paper is to apply the same method 
to relate two fluid fluctuating velocities estimated at 
the same time but at two spatial locations Xc and 
X, separated by the space distance As. We therefore 
assume the following equation 

Z,(X,) = b,Z,(X,-)+/?, (i= l,2) (8) 

where bi (i = I, 2) and /I, (i = 1,2) have the same sense 
as ui and a, in equation (5). By the same procedure 
adopted for equation (5), from equation (8), we have 

h = .4,&W. (9) 

Introducing equation (5) into equation (8) to elim- 
inate Zi(Xr), we have 

Z,(X,) = a,b,Z,(X,)+yi (i = 1,2) (IO) 

where I’,, being b,cri+fl,, is assumed to be mean-zero, 
Gaussian random variables. To complete equation 
(IO), we should know the standard deviations (a,.), of 
7,. For this, squaring equation (IO) and then taking 
the ensemble average, we have 

m = a:b:~+2aibiz;(X,)r,+~. 

Considering the independence of I’, and Zi(X,) and 
using the definitions of Z, and y,, we finally arrive at 

I = a# + (0,); 

i.e. 

(a,.), = J(l -a,!&‘) (i = 1,2). (11) 

Equation (10) with the standard deviation given by 
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equation (I 1) will be used as the model equation of 
the present study. It relates directly the fluctuating 
velocities of the fluid at the successive location points 
of the particle and includes both the time and the 
space effects of the turbulent field via coefficients a, 
and h,. In this model, unlike in conventional time 
series method, GI, and pi are not supposed to be mean- 
zero, Gaussian random variables ; we only require 
that their linear combinations yi are mean-zero, Gaus- 
sian random variables. This can be regarded as the 
requirement for the properties of xi and /I,. It is noted 
that the coordinate system o-jtl employed in Fig. 1 is 
local and should be transformed at each time step. 

2.3. Calculation procedure 
(I) The particle position and velocity are given at 

t = 0. The fluid initial fluctuating velocity components 
LQ (i = I, 2) at the particle position are obtained from 
Gaussian variables satisfying p.d.f. with variances 11:. 
The fluid instantaneous velocity can then be obtained 
by adding the known mean velocity and the fluctu- 
ating part. 

(2) From the fluid instantaneous velocity found 
above, the fluid point position at the instant Af, Xr, 
can be calculated by the Euler-Cauchy method. Using 
the given particle initial velocity and the fluid instan- 
taneous velocity just obtained, through equation (I), 
we can find the position of the particle at time Af, 
X,, by the Runge-Kutta method so that As can be 
calculated (see Fig. I). 

(3) According to the rule of Fig. I, we establish a 
relative coordinate system o-jr1 so that we can deter- 
mine the coefficients a, and bi from equations (7) and 
(9). 

(4) Substituting ai and bi into equation (IO) and 
generating the mean-zero Gaussian variables yi with 
standard deviations given by equation (I I), the fluc- 
tuating velocity of the Fluid point at X, can then be 
obtained from equation (I 0). We can further find the 
fluid instantaneous velocity. 

(5) Letting X, computed at step (2) be the starting 
point of the next time step. i.e. X,, we repeat above 
steps after the completion of computation. It should 
be pointed out that at every time step, a new relative 
coordinate system 0-k is used. 

3. SIMULATION AND RESULTS 

3. I. Choice of the correlation functions and the involved 
parameters 

The experiments of Synder and Lumley, Wells and 
Stock are two, relatively speaking, comprehensive 
experiments about particle motion in turbulent flows 
and are often chosen as a basis for testing compu- 
tational procedures. We also do so and in the present 
study the following autocorrelation and spatial cor- 
relation functions proposed by Frenkiel [I81 are 
adopted : 

Z,(x,) = WWYX,) exp ( !> 
-fY (i=l,‘) T. 

(i = l,2) (13) 

where A, and A2 are called, respectively, the longi- 
tudinal and transverse lengthscales. Of course, there 
are many alternatives to the forms of the correlation 
functions in equations (12) and (13). Throughout all 
the computation, the integral timescales 7i and length- 
scales Ai in equations (I 2) and (I 3) are estimated by 

7 

7 ,- -T -0735411 2- .- (14) 
E 

and 

A, = 2.57,&i?) (15) 

A, = DA? (16) 
9 where u2 = i(ul+u:). Here D = 2, a conclusion from 

the stationary, homogeneous, isotropic and incom- 
pressible turbulence theory [ 191 except otherwise 
noted. Equations (15) and (16) are known as Hinze’s 
relation and Saffman’s relation, respectively [l9]. In 
addition, 7( and Ai are estimated at locations X, and 
X, (see Fig. l), respectively. In isotropic or weak aniso- 
tropic turbulence, velocity variances evaluated in the 
absolute system O-XY and the relative coordinate 
system e[rl shown in Fig. I are related through 

3 = sin’Oz+cos’ Oz 
7 z = cos’ Ou~+sin’&$ 

3.2. Simulation L$ the experiment of Snyder and 
Lumlqv [9] 

One of the most comprehensive experiments about 
particle motion in turbulent flow is that reported by 
Snyder and Lumley [9]. They used particles of various 
sizes and densities ranging from light particles that 
would closely follow the fluid velocity fluctuation to 
heavy particles that would experience both inertia 
and crossing-trajectory effects. In this experiment the 
particles are injected into a grid-generated turbulent 
air flow at X/M = 20. The measurements were carried 
out beginning from X/M = 68, where X represents 
the distance from the grid and M = 2.54 cm. The 
principal direction of the flow, the X direction say, 
was ascendant. The average flow field parameters are 
given by 

ox=65.5cms-’ or=0 (17) 

(18) 

(19) 
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With Taylor’s frozen hypothesis and the relation 
dlcldt = -a, where k is defined as 

k = ;(z+2z) (20) 

we obtain 

I 2 
42.4(X/M-16)' +39.4(X/M-12)' 1 

(21) 

In the simulation of this experiment, the coefficient D 
in equation (I 6) is set equal to 2.56, a measured value 
given by Snyder and Lumley. In the present study, the 
time step At is equal to 0.002 s. 

The calculated and experimental transverse dis- 
pcrsions for four types of particles are compared in 
Fig. 2, where the computed particle-dispersions in the 
longitudinal direction. i.e. the X direction, are also 
included. A fair agreement is observed, even for the 
hollow glass particle. for which some numerical 
methods [7, 81 and theoretical models [l2, 141 fail. 
The present predictions are in accordance with that 
of Walklate [20]. It can be seen that for the hollow 
glass particle, whose time constant is 1.735 ms, the 
crossing-trajectory effect still cannot be completely 
neglected for the statistics of dispersion. As a result, 
dispersions in the Xand Y directions are not identical. 
Besides. the crossing-trajectory effect reduces unequ- 
ally the particle-dispersions in the directions normal to 

4.29 

3.66 

“i 3’43 

z 

3.00 

2 2.57 

g 
22 
5f 2.14 

.- 
u 
t !  1.72 

l-a 

5 1.29 

I 

2 0.66 

and parallel to the gravity direction ; particles disperse 
more in the gravity direction. 

Figure 3 shows the numerical and experimental par- 
ticle transverse fluctuating velocity decay curves for 
the four types of particles. Also included in Fig. 3 are 
the predicted particle longitudinal fluctuating velocity 
decay curves and the turbulent flow decay curves. 
A qualitative agreement between the predicted and 
experimental data is observed. As realized by Snyder 
and Lumley, the hollow glass particle should have 
closely followed the turbulent flow field (considering 
the loss of the energy due to the low sampling rate used 
in their experiment). This speculation is confirmed by 
the present calculation. It is noted that the hollow 
glass particle indeed responds to all the fluctuations 
in the turbulent flow and consequently the difference 
in its fluctuating velocities in the directions parallel to 
and normal to the direction of the drift velocity, i.e. 
the particle Oseen terminal velocity, is very small. 
This indicates that the crossing-trajectory effect on the 
statistics of the fluctuating velocity is negligible. For 
three other kinds of particles with larger time 
constants, the crossing-trajectory effect plays an 
important role and reduces the particle fluctuating 
velocity more in the direction normal to the direction 
of drift velocity than in the direction parallel to the 
particle drift direction; the larger the particle time 
constant, the greater the difference between the par- 
ticle fluctuating velocity decays in the directions per- 

prediction: 
1121: x (yl -direction Ihollow glass1 
3141: x Iyl -direction km pollen1 
5 161: x Iyl -direction lglassl 
7 (81: x Iyl -direction fcopperl 
experimt: 
+ : hollow glass 
I : torn pollen 
0 : glass 
x : copper 

0.15 0.20 0.25 0.30 0.35 0.40 

time (s) 

FIG. 2. Variation of particle mean-square displacements with time for four types of particles. 
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: twbulent decay in x direction 
---_ : turbulent decay in y direction 
prediction: 
1121: x lyl direction lhollow glass1 
3141: x lyl-direction km pollen) 
5161: x iyl-direction Iglassl 
7 181: I iyl direction lco~perl 
experiment: 

0.00 0.10 0.20 0.30 0.40 0.50 

time (s) 

FIG. 3. Variation of particle fluctuating velocities with time. 

pendicular to and parallel to the particle drift direc- 
tion, a tendency consistent with the previous study of 
Reeks [2 11. 

Wells and Stock [IO] used an identical grid system 
to Snyder and Lumley’s to produce a turbulent air 
flow, but the principal direction of flow was hori- 
zontal. The mean data of the turbulent field are 

us = 655cms-’ 0,. = 0 (22) 

( Us)? -___- 
“.’ = 54.88(X/M-7.987) 

(&)2 
I” = 54.88(X/M- 7.987) 

3 

54.88(X/M- 7.987)’ 1 ’ (25) 

The aim of this experiment was to isolate the effect of 
crossing-trajectories on the dispersion of the particles 
in the turbulent Row. The particles were charged 
before the grid and a uniform electrical field within 
the test section was used to simulate the effect of 
several gravity fields. The measurement of the trans- 
verse dispersions of the particles began from 
X/M = 20 for two kinds of solid glass beads. 

For both types of particles and for several drift 
velocity values, the calculated and experimental dis- 

persions are compared in Figs. 4 and 5. As shown in 
the two figures, changes in the drift velocity affect 
significantly the 57 /lrn particle, while the 5 ltrn particle 
is predominantly controlled by the turbulent flow. In 
addition, in the absence of Vd, it appears to be that 
the 57 ltrn particle disperses more than the 5 /tm 
particle, but this tendency is too weak to draw a firm 
conclusion. We somehow agree to the theoretical pre- 
dictions of Reeks and Pismen and Nir [2 I. 221 that in 
the absence of V, and for particles whose time con- 
stants are smaller than 0. I s, the particle dispersion is 
only weakly influenced by its inertia. 

Figures 6 and 7 represent comparisons of calculated 
particle fluctuating velocity decays in the longitudinal 
direction (X direction) with experimental data for the 
5 and 57 pm particles, respectively. Also included are 
the predicted particle fluctuating velocity decay in the 
transverse direction and the turbulent flow field decay 
as a reference. Again, all the tendencies observed in 
the experiment of Snyder and Lumley appear. In 
addition, in the absence of Vdr the computed particle 
fluctuating velocity decays for the 57 pm particle in 
the Xand Y directions are statistically equivalent. The 
experimental results seem to indicate a faster decay of 
the particle fluctuating velocity in the case of zero drift 
velocity than in the case of non-zero V,. In this paper, 
Wells and Stock mentioned that the differences are 
small and that they expect no significant influence of 
V, on the decay curves of particle fluctuating vel- 
ocities. Our predictions only show a slight influence 



Grid-generated turbulent flows 85 

3.00 

2.50 

“E 

E 2.00 

E 

2 
2- 1.54 
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ii 
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prediction: 
1: drift velocity=0 km/s1 
2 : drift velocity=586 lcm/sl 
3 : drift velocity-20.91 h/sl 
experimt: 
+ : drift velocity=0 ICdSl 
X : drift velocityd.86 lcm/sl 
o : drift velocity=20.91 Wsl 

20.00 34.00 40.00 50.00 60.00 70.00 

x/M 

FIG. 4. Five-micron particle-transverse dispersions when Vd takes diRerent values. 

prediction: 
1 : drift velocity=0 WSl 

2 : drift velocity-258 kmhl 
3 : drift velocityS4.5 Wsl 
experhent: 
+ : drift velocity=0 IdSI 

x : drift velocity=25.8 h/s1 
o : drift velocity=54.5 b/s1 

30.00 35.00 40.00 45.00 50.00 55.00 60.00 55.00 70.00 

x/M 

FIG. 5. Fifty-seven-micron particle-transverse dispersions when Vd takes different values. 
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: 
preOiction: 

turbulent decay 

1121: x lyldirection (drift velocity=0 cahl 
3141: x (yldirection [drift velocity-5.66 cm/s1 
5161: x lyldirection [drift velocityG3.91 cm/s1 
experiment: 
t : drift velocity=0 CdS 

II : drift velocitv-5.66 m//s 
o : drift velocit&M.91 m/s I/’ 6 

20.00 30.00 40.00 50.00 60.00 70.00 60.00 90.00 100.00 

x/M 

FIG. 6. Five-micron particle fluctuating velocity decay in the longitudinal and transverse directions. 

12.05 

10.65 

9.64 

6.44 

2.41 

-I 

30.00 40.00 50.00 60.W 70.00 80.00 90.00 100.00 110.00 120.00 

x/M 

FIG. 7. Fifty-seven-micron particle fluctuating velocity decay in the longitudinal and transverse directions. 

: turbulent decay 
prediction: 
l(21: x lyldirection (drift velocity-0 
3141: xly)direction [drift veloclty=25.8 cm/.sl 
5161: xlyldirection (drift velocity-54.5 cl/s1 
experiment: 
*: drift velocity-O CdS 

x: drift velocitp25.6 CI/S 
o: drift velocitp54.5 cnh 
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of Vd; the decay is slower in the case of zero Vd. The 
same tendency had been theoretically predicted by 
Reeks. 

4. 

3.4. Remurks 
The numerical experiments conducted by using 

values of At ranging from 2 x IO-“ to IO-’ s show 
that the computed results for the same kind of particle 
vary with a difference smaller than 6/100. All the 
predictions presented above are obtained by aver- 
aging over 5000 particles. 

5. 

6. 

7. 

4. CONCLUSION 8. 

We have presented a Lagrangian model to describe 
the particle motion in turbulent flows. The basic idea 
of our model relies on the conventional time series 
analysis. By this method, we are able to estimate the 
fluid fluctuating velocity along the particle trajectory. 
As a validation of the present model, we have simu- 
lated numerically the two experiments of Snyder and 
Lumley and of Wells and Stock. On the whole, the 
predicted and experimental results, including particle- 
dispersion and particle fluctuating velocity decay, are 
in a fair agreement. Furthermore, the corresponding 
quantities for the longitudinal direction are also com- 
puted. It is shown that the crossing-trajectory effect 
influences unequally the particle-dispersion and par- 
ticle fluctuating velocity decay in the directions nor- 
mal and parallel to the gravity direction. These trends 
conform to the theoretical study of Reeks. 
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